Sustainable Minds® Transparency Report (EPD BLUE RIDGE

SM Transparency Catalog
Blue Ridge Fiberboard
SOUNDSTOP

SOUNDSTOP®

SOUNDSTOP sound-deadening fiberboard is a high-quality, cost-effective solution to airborne sound reduction. It favorably increases sound transmission class (STC) and outside inside transmission class (OITC) values of walls, ceilings, and floors by absorbing airborne sound vibrations. Meeting national codes and building standards, SOUNDSTOP is as versatile as it is effective, perfect in applications ranging from walls to ceilings to floors. It can be used in homes and commercial buildings where airborne noise and sound transmission from room to room needs to be eliminated. The product also blocks outside noise from heavy traffic, blaring horns, airports, children playing, or other exterior noises that are a concern.

Performance dashboard

Features & functionality

Cost-effective solution for reducing airborne sound transmission

Enhances acoustic privacy and occupant comfort in interior spaces

Installs easily behind gypsum drywall in wall and ceiling assemblies

Contributes to property value by improving interior sound performance

Lightweight, installs and cuts easily with a knife, saving you time and money

Visit BLUE RIDGE FIBERBOARD for more product information: SOUNDSTOP

Environment & materials

Improved by:

Utilization of 75% post-industrial waste wood

Biobased binder

No added formaldehyde

Contributes to LEED credits for LEED certification

Carbon sequestering wood chips

Made in America

Certifications, rating systems & disclosures:

Health Product Declaration, 100ppm

USDA® BioPreferred Program 100% Bio-based content material, per ASTM 6866-22 Method B

CDPH Standard Method v1.2, MAS Certified Green® Low-Emitting Materials

Does not contain any Living Building Challenge Red List 4.0 chemicals

Build America, Buy America Act (BABA) and Buy American Act (BAA) compliant

See LCA, interpretation & rating systems

MasterFormat® 09 81 13 Product specifications:

SOUNDSTOP Guide Spec SOUNDSTOP Technical Data Sheet

For spec help, contact us or call 800-596-9699

FPD

LCA

SM Transparency Report (EPD)™

 \checkmark

3rd-party reviewed STransparency Report (EPD)

3rd-party verified

Validity: 04/24/25 – 04/24/30 SM-WRM – 04242025 – 001 This environmental product declaration (EPD) was externally verified by Lindita Bushi, PhD, Senior Research Associate at Athena, according to ISO 21930:2017; UL Part A; UL Part B for Structural and Architectural Wood Products; and ISO 14025:2006.

Athena Sustainable Materials Institute 600 Grings Hill Road Sinking Spring, PA 19608

https://www.athenasmi. (610) 985-0933

SUMMARY Reference PCR

UL Part B: Structural and Architectural Wood Products v Regions; system boundaries

North America; Cradle-to-gate Declared unit: 1 m³

LCIA methodology: TRACI 2.1 LCA software; LCI database SimaPro Developer 9.6; ecoinvent

v3.10, US-EI 2.2 **Public LCA:** LCA of W. R. Meadows Blue Ridge

Fiberboard products In accordance with ISO 14044 and the reference PCR, this life cycle assessment was conducted by Sustainable Minds and reviewed by Lindita Bushi, PhD, Senior Research Associate at Athena.

Blue Ridge Fiberboard 250 Celotex Dr. Danville, VA 24541

Danville, VA 24541 www.blueridgefiberboard.com 866-850-8834

S S

SM Transparency Catalog
Blue Ridge Fiberboard
SOUNDSTOP

LCA results & interpretation

LCA results & interpretation

D additional content

Scope and summary

Solution Cradle to gate \bigcirc Cradle to gate with options \bigcirc Cradle to grave

Application

SOUNDSTOP is a cellulose fiberboard designed for reducing airborne noise. It absorbs airborne sound vibration by taking the shock or sound vibrations that travel through drywall and stopping the movement of the sound or shock to the other side. It can be applied to walls, ceilings, and floors to increase sound transmission class (STC) and outside inside transmission class (OITC). It can be used in homes and commercial buildings where airborne noise and sound transmission from room to room need to be eliminated. SOUNDSTOP is installed behind gypsum drywall in interior wall and ceiling applications, or between two layers of subfloor in floor applications.

Declared unit

One cubic meter weighing 254 kg (254 kg/m³). 78.7 individual 1 m² panels at $\frac{1}{2}$ " (12.7 mm) thickness are needed to fulfill the declared unit. The moisture content of the panel is 10% max.

Manufacturing data

Reporting period: January 2023 – December 2023 **Location:** Danville, VA

Sensitivity analysis

Sensitivity analyses were performed to check the robustness of the results where the highest potential environmental impacts are occurring. As the bulk of impacts are attributed to manufacturing activities, electricity usage was selected for sensitivity analysis.

Global warming potential was evaluated for sensitivity since BLUE RIDGE FIBERBOARD is interested in the potential CO_2 -equivalent emissions of its products. By increasing the renewable energy percentage from 7%, reflecting the residual mix for the manufacturing facility subregion, to approximately 50%, potential CO_2 -equivalent emissions could be reduced by approximately 20.0%. This shows that global warming potential is sensitive to increases in electricity from renewable energy sources.

Embodied carbon

Embodied carbon can be defined as the cradle-to-gate (A1-A3) global warming potential impacts. The total embodied carbon per declared unit of SOUNDSTOP is $1.89E+02 \text{ kg CO}_2$ -eq.

Material composition by wt%

MATERIAL	WT %
Cellulose, pulp	80-86%
Starch	5-8%
Paraffin	2-5%
Water	2-5%
Aluminum sulfate	1-2%
Sodium aluminate	<1%

Total impacts by life cycle stage [mPts/decl unit]

2.50E+01	LIFE CYCLE STAGE	MPTS/DECL. UNIT
	Raw material acquisition	1.46E+01
2.00E+01	 Transportation	9 44E 02

What's causing the greatest impacts

All life cycle stages

The raw material acquisition stage dominates the results, accounting for over 54% of the total impacts for seven out of ten TRACI 2.1 impact categories, followed by the manufacturing stage. For global warming, ozone depletion, and fossil fuel depletion, manufacturing accounted for over 75% of the total results. Among the raw materials, the biobased binder was the largest contributor to total results.

SOUNDSTOP

Raw material acquisition

The raw material acquisition (A1) stage has the most significant contribution to most impact categories, primarily due to the biobased binder. While the wood chips account for a much larger share by weight of the raw materials, the use of post-industrial wood chips reduces its contribution to the potential impacts. The starch component in the binder contributed to over 50% of impacts for seven out of ten impact categories.

Transportation

The transportation (A2) of raw materials is the least impactful contributor to the total results. Materials are sourced from within America and transported via semi-truck to the manufacturing facility.

Manufacturing

Manufacturing (A3) is the second highest contributor to most impact categories. The primary driver of environmental impacts within the manufacturing stage is the energy required to produce the panels. However, impacts from the manufacturing stage dominate the results for global warming, ozone depletion, and fossil fuel depletion, stemming primarily from the use of electricity and natural gas. Activities in this stage also include final product packaging and manufacturing waste disposal.

How we're making it greener

BLUE RIDGE FIBERBOARD is committed to producing products and systems to reduce our energy usage, material resource consumption, and environmental impact. Products are composed primarily of allnatural, earth-friendly carbon-sequestering wood chips and use a biobased binder.

WOOD IS A CARBON-SMART BUILDING MATERIAL CHOICE

- Reducing and reversing the acceleration of global warming happens by making carbon-smart choices. The wood in BLUE RIDGE FIBERBOARD products captures and stores the CO₂ inherent in wood fibers, which locks up this carbon for the installation's lifetime.
- Trees take up carbon dioxide through photosynthesis and store it in wood fibers. Softwood chips used as the source material for our products, lock in carbon for the life of the building installation.
- As trees grow, they absorb carbon dioxide from the atmosphere during the process of photosynthesis, emitting oxygen and utilizing the carbon to create the tree's very roots, trunk, branches, and leaves. This process is called carbon sequestration, which captures and stores carbon dioxide from the atmosphere. One cubic meter of wood can trap approximately 1 ton of carbon dioxide. To put this concept in perspective, the EPA states an average car emits about 4.6 metric tons of CO₂ per year.
- UNECE (United Nations Economic Commission for Europe) emphasizes that the use of wood in the construction industry reduces CO₂ emission by 30% when used instead of steel. Throughout the life of a wooden structure, its wood components store and restrict the release of carbon dioxide.

RESPONSIBLE WOOD SOURCING

BLUE RIDGE FIBERBOARD responsibly sources 100% of its wood. We

work with suppliers adhering to responsible sourcing principles. Wood supplied to us comes from a known source, is legally harvested and traded, and does not threaten high conservation value. It does not come from deforestation or other ecosystem conversion, which leads to biodiversity loss, including that of rare, threatened, and endangered species, and it is not endangered. It is harvested and produced, ensuring that human and worker rights are protected, including decent and humane working conditions and no forced labor.

See how we make it greener

LCA results

LIFE CYCLE STAGE	A1 RAW MATERIAL ACQUISITION	A2 TRANSPORT	A3 MANUFACTURING
	(X) A1 Raw material acquisition	(X) A2 Transport	(X) A3 Manufacturing
Information modules: Included (X) Excluded (MND)* *Modules A4, A5, B, C, and D are excluded.		DOALLY RA	SURISTIC AND THE SURISTICATION OF THE SURISTICATION

SM Single Score Learn about SM Single Score results

Impacts per declared unit	1.46E+01 mPts	8.44E-02 mPts	5.26E+00 mPts
Materials or processes contributing >20% to to total impacts in each life cycle stage	Extraction and preprocessing of starch component in biobased binder.	Truck transportation to manufacturing facility.	Electricity and natural gas consumption during manufacturing process.

Life cycle impact results per declared unit

LIFE CYCLE STAGE			A1 RAW MATERIAL SUPPLY	A2 TRANSPORT	A3 MANUFACTURING
Ecological damage					
Impact category	Unit				
GWP, IPCC TOTAL	kg CO ₂ eq	0	-1.07E+00	1.46E+00	1.86E+02
GWP, IPCC BIOGENIC	kg CO ₂ eq	0	-3.54E+01	0.00E+00	3.54E+01
	kg CO ₂ eq	0	3.43E+01	1.46E+00	1.51E+02
GWP, TRACI 2.1 TOTAL	kg CO ₂ eq	0	2.00E+00	1.44E+00	1.85E+02
GWP, TRACI 2.1 BIOGENIC	kg CO ₂ eq	0	-3.54E+01	0.00E+00	3.54E+01
GWP, TRACI 2.1 FOSSIL	kg CO₂ eq	0	3.74E+01	1.44E+00	1.50E+02
Ozone depletion	kg CFC-11 eq	0	1.38E-06	2.23E-08	7.64E-06
Acidification	kg SO₂ eq	0	4.23E-01	1.71E-03	3.27E-01
Eutrophication	kg N eq	0	3.44E-01	1.25E-04	5.54E-02

Human health damage

Impact category	Unit				
Smog	kg O_3 eq	0	3.32E+00	2.63E-02	3.97E+00
Respiratory effects	kg PM _{2.5} eq	0	4.47E-02	4.48E-04	2.27E-02

Additional environmental information

Impact category	Unit				
Carcinogenics	CTU _h	0	91.02%	0.05%	8.91%
Non-carcinogenics	CTU _h	0	94.7%	0.28%	5.25%
Ecotoxicity	CTU	0	8.93%	5.25%	1.56%
Fossil fuel depletion	MJ surplus	0	7.51E+01	2.75E+00	2.78E+02

References

LCA Background Report

LCA of W. R. Meadows BLUE RIDGE FIBERBOARD products (public version), 2025. Developed using the IPCC Fifth Assessment Report (AR5) 100-year time, TRACI v2.1, CML, and Cumulative Energy Demand (LHV) impact assessment methodologies, SimaPro Analyst 9.6 software, and ecoinvent v3.10 and US-EI 2.2 databases.

Rating systems

The intent is to reward project teams for selecting products from manufacturers who have verified improved life-cycle environmental performance.

ISO 14025: 2006 Environmental labels and declarations — Type III environmental declarations — Principles and procedures.

ISO 21930: 2017, Sustainability in buildings and civil engineering works --Core rules for environmental product declarations of construction products and services serves as the core PCR.

UL Part A: Life Cycle Assessment Calculation Rules and Report Requirements v4.0

March 2022. PCR review conducted by Lindita Bushi, PhD, Senior Research Associate (Athena Sustainable Materials Institute), lindita.bushi@athenasmi.org; Hugues Imbeault-Tétreault (Group AGECO); and Jack Geibig (Ecoform).

UL Part B: Structural and Architectural Wood Products EPD Requirements, v1.1

May 2020. PCR review conducted by Dr. Thomas Gloria, Chair (Industrial Ecology Consultants), t.gloria@industrial-ecology.com; Dr. Indro Ganguly (University of Washington); and Dr. Sahoo (University of Georgia).

UL Environment General Program Instructions v2.5, March 2020 (available upon request)

Download PDF SM Transparency Report/ EPD

SM Transparency Reports (TR) are ISO 14025 Type III environmental declarations (EPD) that enable purchasers and users to compare the potential environmental performance of products on a life cycle basis. Environmental declarations from different programs (ISO 14025) may not be comparable. Comparison of the environmental performance using EPD information shall consider all relevant information modules over the full life cycle of the products within the building. This PCR allows EPD comparability only when the same functional requirements between products are ensured and the requirements of ISO 21930:2017 §5.5 are met. It should be noted that different LCA software and background LCI datasets may lead to differences results for upstream or downstream of the life cycle stages declared. LCIA results are relative expressions and do not predict impacts on category endpoints, the exceeding of thresholds, safety margins or risks. These six impact categories are globally deemed mature enough to be included in Type III environmental declarations. Other categories are being developed and defined and LCA should continue making advances in their development. However, the EPD users shall not use additional measures for comparative purposes. Comparison of the environmental performance of structural and architectural wood products using EPD information shall be based on the product's use and impacts at the construction works level, and therefore EPDs may not be used for comparability purposes when not considering the construction works energy use phase as instructed under this PCR. Full conformance with the PCR for structural and architectural wood products allows EPD comparability only when all stages of a life cycle have been considered, when they comply with all referenced standards, use the same sub-category Part B PCR, and use equivalent scenarios with respect to construction works. However, variations and deviations are possible. Example of variations: Different LCA software and background LCI datasets may lead to differences results for upstream or downstream of the life cycle stages declared.

LEED BD+C: New Construction | v4 - LEED v4

Building product disclosure and optimization

Environmental product declarations

O Industry-wide (generic) EPD	1/2 product
Product-specific Type III EPD	1 product

LEED BD+C: New Construction | v4.1 - LEED v4.1 Building product disclosure and optimization

Environmental product declarations

O Industry-wide (generic) EPD	1 product
Product-specific Type III EPD	1.5 products

Collaborative for High Performance Schools National Criteria

MW C5.1 – Environmental Product Declarations

S Third-party certified type III EPD

Green Globes for New Construction and Sustainable Interiors

2 points

Materials and resources

VC 3.5.1.2 Path B: Prescriptive Path for Building Core and Shell

VC 3.5.2.2 and SI 4.1.2 Path B: Prescriptive Path for Interior Fit-outs

BREEAM New Construction 2018

Mat 02 - Environmental impacts from construction products

Environmental Product Declarations (EPD)

O Industry-average EPD	.5 points
O Multi-product specific EPD	.75 points
V Product-specific EPD	1 point

SM Transparency Report (EPD)™

EPD	LCA
3rd-party reviewed	<
Transparency Re	port (EPD)

3rd-party verified

Validity: 04/24/25 - 04/24/30 SM-WRM - 04242025 - 001

This environmental product declaration (EPD) was externally verified by Lindita Bushi, PhD, Senior Research Associate at Athena, according to ISO 21930:2017; UL Part A; UL Part B for Structural and Architectural Wood

Athena Sustainable Materials Institute 600 Grings Hill Road Sinking Spring, PA 19608 https://www.athenasmi.org/ (610) 985-0933

Products; and ISO 14025:2006.

SUMMARY

Reference PCR UL Part B: Structural and Architectural Wood Products v1.1

Regions; system boundaries North America; Cradle-to-gate **Declared unit:** 1 m³

LCIA methodology: TRACI 2.1

LCA software; LCI database SimaPro Developer 9.6; ecoinvent v3.10, US-EI 2.2

Public LCA: LCA of W. R. Meadows Blue Ridge Fiberboard products

In accordance with ISO 14044 and the reference PCR, this life cycle assessment was conducted by Sustainable Minds and reviewed by Lindita Bushi, PhD, Senior Research Associate at Athena.

Blue Ridge Fiberboard

250 Celotex Dr. Danville, VA 24541 www.blueridgefiberboard.com 866-850-8834

Contact us

© 2025 | The SM Transparency Report [EPD]" Program is operated by Sustainable Minds* (www.sustainableminds.com) | Privacy policy

ansparency Report (EPD)

SM Transparency Catalog
Blue Ridge Fiberboard
SOUNDSTOP

EPD additional content

SOUNDSTOP

EPD additional content

Data

Background This product-specific plant-specific declaration was created by collecting production data from the facility in Danville, VA. All unit processes were modeled using primary data. Secondary data sources include those available in the ecoinvent v3.10 and US-EI 2.2 databases.

Product-specific packaging includes poly bags which are typically disposed of at the site of installation

Allocation The BLUE RIDGE FIBERBOARD facility produces multiple types of panel products each year. To allocate electricity and natural gas consumption accurately to each product, total annual energy consumption was distributed based on the proportion of each product's annual production (by mass) relative to the total plant production. This approach assigns manufacturing activities proportionally to each product type.

All associated manufacturing resources and waste flows were allocated using the same approach. There are no co-products produced during their manufacturing processes. The model used in the LCA ensures that the sum of the allocated inputs and outputs of a unit process shall be equal to the inputs and outputs of the unit process before allocation. This means that no double counting or omissions of inputs or outputs through allocation is occurring.

For recycled content, system boundaries were drawn consistent with the cut-off allocation approach. Post-industrial wood chips, which are used as an input into some of the included production processes, are assumed to enter the system burden-free in that burden associated with the production of virgin wood chips is not allocated to the fiberboard life cycle.

Cut-off criteria for the inclusion of mass and energy flows are 1% of renewable primary resource (energy) usage, 1% nonrenewable primary resource (energy) usage, 1% of the total mass input of that unit process, and 1% of environmental impacts. The total of neglected input flows per module does not exceed 5% of energy usage, mass, and environmental impacts.

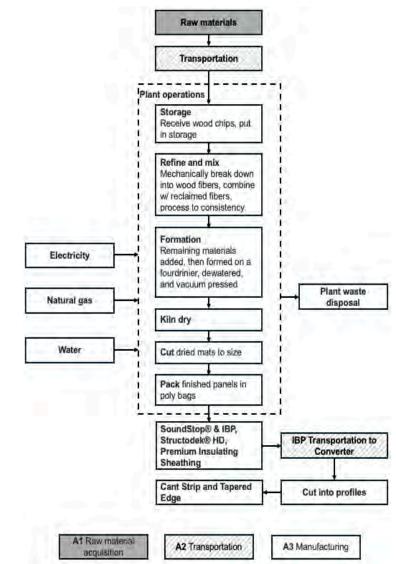
The only exceptions to these criteria are substances with hazardous and toxic properties, which must be listed even when the given process unit is under the cut-off criterion of 1% of the total mass. No known flows are deliberately excluded from this declaration, and no substances considered to be hazardous or toxic according to the Resource Conservation and Recovery Act (RCRA), Subtitle C are present in the products. Therefore, these criteria have been met. Biogenic carbon is included in reported results.

Quality

The precision of the data is considered high. BLUE RIDGE FIBERBOARD personnel provided a detailed bill of materials, and facility managers provided utility information for the manufacturing facility. The raw material transportation distances were provided directly by the facility.

The data included is considered complete. The LCA model included all known material and energy flows. As pointed out in that section, no known flows above 1% were excluded and the sum of all excluded flows totals less than 5%, whether evaluated by mass, energy, or potential environmental impact.

The consistency of the model is considered high. Furthermore, the modeling assumptions were consistent throughout the model, with a preference for the ecoinvent v3.10 database.


Major system boundary exclusions

- Manufacture and transport of packaging not associated with final product
- Construction of major capital equipment
- Maintenance and operation of support equipment .
- Human labor and employee transport

Scenarios and additional technical information

Disposal of waste [C4] While the impacts from final product disposal are out of the scope of this cradle-to-gate study, ISO 21930:2017 requires that biogenic carbon emissions associated with product disposal be separately reported. The biogenic carbon emissions from product in module C4 total 3.54E+01 kg CO₂.

Flow diagram

Major assumptions and limitations

- Generic data sets used for material inputs, transport, and waste processing are considered good quality, but actual impacts from material suppliers, transport carriers, and local waste processing may vary
- The impact assessment methodology categories do not represent all possible environmental impact categories; characterization factors used within the impact assessment methodology may contain varying levels of uncertainty
- LCA results are relative expressions and do not predict impacts on category endpoints, the exceeding of thresholds, safety margins, or risks
- This EPD covers only the cradle-to-gate impacts of products using a declared unit. The results listed in this EPD cannot be used to compare between products.
- Disposal of final product, except for biogenic carbon balance reporting

LCIA impact factors required by the PCR are global warming, ozone depletion, acidification, eutrophication, smog, and fossil fuel depletion; "These six impact categories are globally deemed mature enough to be included in Type III environmental declarations. Other categories are being developed and defined and LCA should continue making advances in their development. However, the EPD users shall not use additional measures for comparative purposes."

LCIA results, resource use, output and waste flows, and carbon emissions & removals per declared unit (1 m³ of panel)

Parameter	Unit	A1	A2	A3	Total
LICA results					
GWP, IPCC _{TOTAL}	kg $\rm CO_2$ eq	-1.07E+00	1.46E+00	1.86E+02	1.86E+02
GWP, IPCC _{BIOGENIC}	kg $\rm CO_2$ eq	-3.54E+01	0	3.54E+01	0
GWP, IPCC _{FOSSIL}	kg $\rm CO_2$ eq	3.43E+01	1.46E+00	1.51E+02	1.86E+02
GWP, TRACI 2.1 _{TOTAL}	kg $\rm CO_2$ eq	2.00E+00	1.44E+00	1.85E+02	1.89E+02
GWP, TRACI 2.1 _{BIOGENIC}	kg $\rm CO_2$ eq	-3.54E+01	0	3.54E+01	0
GWP, TRACI 2.1 _{FOSSIL}	kg CO ₂ eq	3.74E+01	1.44E+00	1.50E+02	1.89E+02
Ozone depletion	kg CFC-11 eq	1.38E-06	2.23E-08	7.64E-06	9.04E-06
Acidification	kg SO ₂ eq	4.23E-01	1.71E-03	3.27E-01	7.51E-01
Eutrophication	kg N eq	3.44E-01	1.25E-04	5.54E-02	3.99E-01
Smog	kg O₃ eq	3.32E+00	2.63E-02	3.97E+00	7.31E+00
Fossil fuel depletion	MJ surplus	7.51E+01	2.75E+00	2.78E+02	3.56E+02
Additional environmental information					
Respiratory effects	kg PM2.5 eq	4.47E-02	4.48E-04	2.27E-02	6.78E-02
Carcinogenics	CTUh	91.02%	0.05%	8.93%	100%
Non carcinogenics	CTUh	94.47%	0.28%	5.25%	100%
Ecotoxicity	CTUe	97.82%	0.62%	1.56%	100%
Resource use indicators					
Renewable primary energy used as energy carrier (fuel)	MJ, NCV	4.35E+01	3.17E-02	1.08E+02	1.51E+02
Renewable primary resources with energy content used as material	MJ, NCV	7.21E+02	0	0	7.21E+02
Total use of renewable primary resources with energy content	MJ, NCV	7.65E+02	3.17E-02	1.08E+02	8.73E+02
Non-renewable primary resources used as an energy carrier (fuel)	MJ, NCV	5.04E+02	2.07E+01	3.56E+03	4.08E+03
Non-renewable primary resources with energy content used as material	MJ, NCV	2.81E+02	0	0	2.81E+02
Total use of non-renewable primary resources with energy content	MJ, NCV	7.85E+02	2.07E+01	3.56E+03	4.36E+03
Secondary materials	kg	1.62E+02	0	0	1.62E+02
Renewable secondary fuels	MJ, NCV	0	0	0	0
Non-renewable secondary fuels	MJ, NCV	0	0	0	0
Recovered energy	MJ, NCV	0	0	0	0
Use of net fresh water resources	m3	2.68E+01	2.71E-02	3.74E+00	3.06E+01
Abiotic depletion (fossil fuels)	MJ, LHV	7.07E+02	1.94E+01	2.12E+03	2.85E+03
Output flows and waste category indicators	141 5 , ETTV	7.072-02	1.542.01	2.122 05	2.031.03
Hazardous waste disposed	ka	5.37E+00	4.39E-03	1.86E-01	5.56E+00
Non-hazardous waste disposed	kg	6.18E+01	4.39L-03	8.79E+01	1.50E+02
	kg				
High-level radioactive waste, conditioned, to final repository	kg	1.40E-04	2.32E-07	1.64E-05	1.56E-04
Intermediate- and low-level radioactive waste, conditioned, to final repository	kg	2.98E-04 0	4.54E-07 0	1.15E-02 0	1.18E-02 0
Components for re-use	kg		0	0	0
Materials for recycling	kg	0	0	0	0
Materials for energy recovery	kg				
Exported energy	MJ	0	0	0	0
Carbon emissions and removals			0	0	2 645-04
Biogenic Carbon Removal from Product	kg CO ₂	-3.54E+01	0	0	-3.54E+01
Biogenic Carbon Emission from Product	kg CO ₂	0	0	0	0
Biogenic Carbon Removal from Packaging	kg CO ₂	0	0	0	0
Biogenic Carbon Emission from Packaging	kg CO ₂	0	0	0	0
Biogenic Carbon Emission from Combustion of Waste from Renewable Sources Used in Production Processes	kg CO ₂	0	0	0	0
Calcination Carbon Emissions	kg CO ₂	0	0	0	0
Carbonation Carbon Removals	kg CO ₂	0	0	0	0
Carbon Emissions from Combustion of Waste from Non-Renewable Sources used in Production Processes	kg CO ₂	0	0	0	0

SM Transparency Report (EPD)™

EPD	LCA
3rd-party reviewed	♥
Transparency Re	port (EPD)
3rd-party verified	

Validity: 04/24/25 - 04/24/30 SM-WRM - 04242025 - 001

This environmental product declaration (EPD) was externally verified by Lindita Bushi, PhD, Senior Research Associate at Athena, according to ISO 21930:2017; UL Part A; UL Part B for Structural and Architectural Wood Products; and ISO 14025:2006.

Athena Sustainable Materials Institute 600 Grings Hill Road Sinking Spring, PA 19608 (610) 985-0933

SUMMARY Reference PCR UL Part B: Structural and Architectural Wood Products v1.1

Regions; system boundaries North America; Cradle-to-gate Declared unit: 1 m³

LCIA methodology: TRACI 2.1

LCA software; LCI database SimaPro Developer 9.6; ecoinvent v3.10, US-EI 2.2

Public LCA: LCA of W. R. Meadows Blue Ridge Fiberboard products

In accordance with ISO 14044 and the reference PCR, this life cycle assessment was conducted by Sustainable Minds and reviewed by Lindita Bushi, PhD, Senior Research Associate at Athena.

Blue Ridge Fiberboard 250 Celotex Dr. Danville, VA 24541 www.blueridgefiberboard.com 866-850-8834

Contact us

SM Transparency Catalog
Blue Ridge Fiberboard
SOUNDSTOP

How we make it greener

Expand all

RAW MATERIALS ACQUISITION

BLUE RIDGE FIBERBOARD recognizes the importance of sourcing local, responsibly sourced raw materials. This commitment not only supports our local economy and creates more substantial, more resilient communities but also ensures that we maintain the highest standards of quality and sustainability in our products.

All materials are sourced from the United States. By partnering with local suppliers who share our dedication to environmental stewardship and ethical practices, we reduce our carbon footprint and promote the well-being of our planet.

The major material in this product is carbon sequestering wood chips. Our product uses a bio-based binder, which is a sustainable alternative to fossil fuel-based binders, further reducing our environmental impact. Our product is free from added formaldehyde, ensuring the safety and health of our employees, customers, and the environment.

SOUNDSTOP

TRANSPORATION

Using US-based materials lowers the environmental impact of our transportation, which is crucial for reducing our carbon footprint. By sourcing materials locally, we minimize the effects of long-distance shipping and overseas transportation, which often involve high emissions from fossil fuels.

- Over 94% of wood chips are sourced within 100 miles of manufacturing
- The majority of raw material is sourced within 200 miles
- All packaging is locally sourced

MANUFACTURING

BLUE RIDGE FIBERBOARD encourages ongoing process improvement. It draws on personnel throughout the mill, from management to hourly employees, to analyze the manufacturing processes and recommend and implement methods for constant quality improvement and resource conservation.

In practice, quality control is performed throughout the process from production to finished product by monitoring individual processes, taking measurements, collecting samples, and testing them to the appropriate internal and external standards. These results are then documented for reference. The manufacturing managers review the compiled data routinely and report findings to the appropriate operating personnel.

Biobased materials play a significant role in greener chemistry by being derived from renewable biological resources. These materials often tend to release fewer hazardous chemicals during production and use, contributing to safer working environments and less environmental pollution. This alignment with the principles of green chemistry supports the creation of more sustainable, ecofriendly products and processes, benefiting both human health and the planet.

- 75% is post-industrial recycled content wood sourced from sawmill waste, including but not limited to sawdust, chips, slabs, and cuttings from lumber or timber

WE USE APPROXIMATELY 18 TWENTY-TON TRUCKLOADS OF CARBON SEQUESTERING WOOD CHIPS PER DAY.

- . Intentionally added product ingredients have been screened against chemicals listed in the Living Building Challenge Red List 4.0, April 2024 and do not contain any of the listed ingredients
- All manufacturing fiberboard waste, including the sawdust, is reincorporated into the product
- Clarified water and wastewater solids are recycled back into the product

USE & END OF LIFE

BLUE RIDGE FIBERBOARD utilizes a Quality Systems Program to ensure compliance with ASTM, UL, and FM certifications and standards. These rigorous standards safeguard products and are prescriptive of International Building Codes (IBC) and International Residential Codes (IRC).

Specifications:

- Classified by Underwriters Laboratories to ANSI/UL 263, UL File • R25702
- Conforms to ASTM C208, Type I, Sound deadening board •
- Fire Resistance Rated UL Wall Designs: U305, U309, U311, U339, U387, U411, U465, U340, U341, V324, V346, and W307
- Flame Spread Index 85 Smoke Developed 65
- Sound Transmission Class (STC) 23
- Meets the requirements of the Build America, Buy America Act (BABA) and Buy American Act (BAA)
- Contributes to thermal insulation with R-values of 1.3 per 1/2"

BLUE RIDGE FIBERBOARD is a proud member of the Single-Ply Roofing Industry.

We understand the importance of end-of-life disposal. Because of the material's required installation process and the difficulty of removal once installed, locally available C&D waste disposal methods can be used. The material's biobased makeup allows this product to take advantage of a biodegradable option if one is available.

SM Transparency Report (EPD)™

EPD	LCA
3rd-party reviewed	•
Transparency Report (EPD)	
3rd-party verified	♥

Validity: 04/24/25 – 04/24/30 SM-WRM - 04242025 - 001

This environmental product declaration (EPD) was externally verified by Lindita Bushi, PhD, Senior Research Associate at Athena, according to ISO 21930:2017; UL Part A; UL Part B for Structural and Architectural Wood Products; and ISO 14025:2006.

Athena Sustainable Materials Institute 600 Grings Hill Road Sinking Spring, PA 19608 (610) 985-0933

SUMMARY

Reference PCR UL Part B: Structural and Architectural Wood Products v1.1

Regions; system boundaries North America; Cradle-to-gate

Declared unit: 1 m

LCIA methodology: TRACI 2.1

LCA software; LCI database SimaPro Developer 9.6; ecoinvent v3.10, US-EI 2.2

Public LCA: LCA of W. R. Meadows Blue Ridge Fiberboard products

In accordance with ISO 14044 and the reference PCR, this life cycle assessment was conducted by Sustainable Minds and reviewed by Lindita Bushi, PhD, Senior Research Associate at Athena.

Blue Ridge Fiberboard 250 Celotex Dr. Danville, VA 24541 www.blueridgefiberboard.com 866-850-8834

Contact us